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Abstract
Molecular dynamics simulations with two different embedded-atom-method
(EAM) potentials are applied to calculate the density, specific heat and
self-diffusion coefficient of liquid cobalt at temperatures above and below
the melting temperature. Simulation shows that Pasianot’s EAM model
of cobalt constructed on the basis of a hcp structure is more successful
than Stoop’s EAM model in the framework of a fcc structure in predicting
the thermophysical properties of liquid cobalt. Simulations with Pasianot’s
EAM model indicate that the density fits into ρ = 7.49–9.17 × 10−4(T −
Tm) g cm−3, and the self-diffusion coefficient is given by D = 1.291 ×
10−7 exp(−48 795.71/RT) m2 s−1. Dissimilar to the linear dependence of
the density and the Arrhenius dependence of the self-diffusion coefficient on
temperature, the specific heat shows almost a constant value of 38.595 ±
0.084 J mol−1 K−1 within the temperature range of simulation. The simulated
properties of liquid cobalt are compared with experimental data available.
Comparisons show reasonable agreements between the simulated results from
Pasianot’s EAM model and experimental data.

1. Introduction

Undercooled liquid has aroused great research interest in recent years [1] for two reasons.
First, undercooled liquid is not in thermal equilibrium and has not been well known up to now.
Second, the rapid solidification of undercooled liquid is an efficient way to produce novel
structures such as metallic glass and a new metastable phase, which is normally excluded
by a phase diagram. The thermophysical properties of undercooled liquid, such as density,
specific heat and self-diffusion coefficient, are of fundamental importance in understanding
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and defining the thermodynamic state of the system [2]. These three parameters can also
give some information on the local structure of undercooled liquid [3], and thus can be used
to predict the glass transition trend of the liquid [4]. Moreover, to quantitatively predict the
processes of crystal nucleation and crystal growth during rapid solidification, one needs the
detailed knowledge of these three parameters in an undercooled regime [5, 6]. However, for
materials with high melting point and high reactivity, the metastable state of an undercooled
liquid is hard to access and keep for a long duration. As a result, there is little experimental
data available on these three parameters in an undercooled regime. Accurate knowledge
of the thermophysical properties requires not only the further development of experimental
techniques, such as the containerless processing technique in combination with the non-contact
diagnostic method [2, 6], but also the development of reliable predictive methods.

The molecular dynamics simulation (MDS) with a potential model from the embedded-
atom-method (EAM) has been proved to be a powerful approach to the simulation of liquid
metals, which was developed two decades ago, and has been successfully applied to simulate
the structure, surface and phase transformation of solid or liquid metals [7, 8]. It has also been
applied to predict thermophysical properties of liquid metals in some extreme cases [9, 10].

Similar to nickel and iron, cobalt is a ferromagnetic transition metal with wide applications
in the aerospace industry. Nevertheless, compared with nickel and iron, cobalt is less well
understood. There is a lack of experimental data of specific heat, density and diffusion
coefficient of liquid cobalt, especially in the undercooled regime. The purpose of the present
work is to carry out simulations on these three parameters, especially in the undercooled
regime. The experimental data available are used for comparisons.

2. Embedded-atom method

The embedded-atom method (EAM) is a semi-empirical technique for computing the energy of
an arbitrary arrangement of atoms. According to the EAM potential model originally developed
by Daw and Baskes [11, 12] on the basis of the density function theory and the concept of a
quasi-atom [13] or effective-medium approach [14], the energy of an atomic system can be
written as

Etot =
∑

i

Fi (ρi) + 1
2

∑
i �= j

φi, j (ri, j ) (1)

ρi =
∑
i �= j

f j (ri, j ) (2)

where Fi is the energy of embedding atom i in an electron density ρi , φi, j a repulsive two-body
potential between atoms i and j , and f j (ri, j ) the contribution of atom j to the electron density
at atom i at a distance ri, j from atom j .

Two different EAM potentials have been developed in the literature for cobalt. One was
constructed by Stoop [15] on the basis of Johnson’s EAM model of a face-centred-cubic (fcc)
structure [16], and the other was developed by Pasianot et al [17] according to cobalt of
hexagonal close-packed (hcp) structure. Following Stoop, F(ρ), φ(r) and f (r) are expressed
as:
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with

Sβ =
n∑

i=1

Ni (ri/re)
−β (6)

Sγ =
n∑

i=1

Ni (ri/re)
−γ (7)

where fe is the scaling factor, Ec the cohesive energy, re the nearest neighbour distance, ρe the
equilibrium electron density, and ri , Ni the radius and the number of atoms in the i th neighbour
shell.

According to Pasianot’s EAM model, f (r) is represented by a Thomas–Fermi screening
function

f (r) = exp(−βr/a0)/(r/a0). (8)

The pair interaction is given as a seven-piece cubic polynomial:

φ(r) =
7∑

k=1

Ak(Rk − r)3 H (Rk − r) (9)

where H (x) is the Heaviside function: if x � 0, H (x) = 0; otherwise, H (x) = 1.
The embedding function F(ρ) is numerically fitted to the universal form of cohesive

energy of Rose [18]:

E(ã) = −Ec(1 + ã) exp(−ã) (10)

with

ã = 3[�〈B〉/Ec]
1/2(a/a0 − 1) (11)

where a0 is the equilibrium lattice constant, a is the value of a0 when the crystal is compressed
or expanded, a/a0 describes the deviation of a crystal from the equilibrium state, 〈B〉 is the
average (Voigt) bulk modulus, and � is the equilibrium atomic volume. So that F(ρ) is
properly defined, E(ã) is modified after the middle of the sixth and seventh nearest neighbour
distance to go smoothly to zero when the expanded crystal has a nearest neighbour distance
equal to a cut-off distance, rCut = 2.1a0.

The model parameters used during simulations for Stoop’s EAM model and Pasianot’s
EAM model are listed in tables 1 and 2, respectively. The embedding function, the pair
potential and the electron density of these two EAM potentials are illustrated in figure 1.

The validity of these two EAM potentials in describing the atomic interactions of liquid
cobalt can be illustrated from the good agreement between the simulated pair distribution
functions (PDF) at a temperature of 1670 K and the experimental data [19], as presented in
figure 2. The PDF is determined from:

g(r) = V 〈ni (r, r + �r)〉
4πr2�r N

. (12)

Here 〈ni (r, r + �r)〉 is the average number of atoms surrounding the i th atom in a spherical
shell between r and r + �r . N is the total number of atoms involved in the system under
consideration and V is the volume of system.
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Figure 1. Illustration of Pasianot’s EAM and Stoop’s EAM potentials: (a) electron density, f (r);
(b) embedding function, F(ρ); (c) pair potential, φ(r).
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Figure 2. Simulated and experimental PDF of liquid cobalt at a temperature of 1670 K.

Table 1. The model parameters for Stoop’s EAM.

Model parameter

b (Å) � (Å3) ρe fe Sγ Sβ γ β α

2.503 11.09 0.3956 0.028 49 12.806 13.886 7.745 5.933 5.004

Table 2. The model parameters for Pasianot’s EAM model (Ri in units of a0, a0 in Å, Ec and Ai

in eV).

Model parameter

R1 2.1 A1 0.263 789 17
R2 1.8 A2 −0.707 060 79
R3 1.7 A3 −1.801 508 45
R4 1.5 A4 2.698 423 62
R5 1.3 A5 −0.350 486 95
R6 1.1 A6 32.524 020 0
R7 1.0 A7 −4.109 211 22
a0 2.507 Ec 4.39

3. Simulation details

The density, specific heat and self-diffusion coefficient are simulated applying the MD
simulation method under constant pressure and constant temperature (N PT ensemble).
Andersen’s N PT algorithm is used during simulations. During simulation, the pressure is
set to zero. At the beginning of the simulation, 4000 atoms were arranged in a face-centred-
cubic box subject to periodic boundary conditions in three directions. The time step was
5.0 × 10−15 s. In order to get the equilibrium liquid state in the simulation, the system started
at 2000 K, which is well above the melting point. This temperature was kept constant for
50 000 steps. Then the quenching process with a cooling rate of 4 × 1011 K s−1 was carried
out to calculate the enthalpy H and density ρ at 100 K intervals of temperature. At each
temperature, 30 000 steps were carried out for equilibrium. Then 20 000 additional steps were
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taken to calculate the enthalpy and density. The simulation was stopped at 1200 K, which is
566 K lower than the melting point. Since the quenching process is very fast, the metal stays
in an undercooled liquid state.

According to Andersen’s N PT algorithm, the box length can be obtained from the
feedback of pressure to zero. Thus, the density can be derived from its definition.

Specific heat can be determined from the differential of the enthalpy:

Cp = dH (T )

dT
= d(E + PV )

dT
(13)

where E is the internal energy, which is the sum of the kinetic energy and the potential energy,
P the pressure, and V the volume of the system.

As to the self-diffusion coefficient D, there are two calculation methods [20]. One method
is to calculate from the generalized-Einstein (GE) equation

D = 1

6N
lim
t→∝

d

dt

〈 N∑
j=1

[r j (τ ) − r j (0)]2

〉
(14)

where r j (0) is the initial position of the j th particle and r j (t) the position of j th particle at
some later time τ .

The other method is to calculate the self-diffusion coefficient from the Green–Kubo (GK)
equation:

D = 1

3N

∫ ∞

0

〈 N∑
j=1

�v j (0) · �v j (τ )

〉
dτ (15)

where �v j (0) is the initial velocity vector for the j th particle and �v j (τ ) the velocity vector at
some later time τ .

Due to the uncertainty introduced by the integral of infinite time in the Green–Kubo
equation, we employ the GE equation to calculate the self-diffusion coefficient. In order
to obtain reliable average values for equation (13), we utilized the algorithm of overlapping-
time-interval correlation averages proposed by Rapaport [20]. The results for the self-diffusion
coefficient were calculated using an average of 20 individual correlation functions, each lasting
25 ps.

4. Simulation results

Figure 3 presents the density data obtained from simulations with different EAM potentials for
pure liquid cobalt. The simulation is limited within a temperature range of 1200–2000 K, which
corresponds to a undercooling of 566 K (0.32Tm) and a superheating of 234 K (0.13Tm). In
this temperature range, the system is kept as liquid. When the temperature is less than 1200 K,
from Pasianot’s EAM model, the system will crystallize. Stoop’s EAM model predicts that:

ρ = 7.47–7.7 × 10−4(T − 1766) g cm−3. (16)

The density predicted from Pasianot’s EAM model is represented by:

ρ = 7.49–9.17 × 10−4(T − 1766) g cm−3. (17)

Obviously, the difference of the simulated densities between the two EAM potentials in the
stable liquid above the melting point is very small. However, Pasianot’s EAM model predicts
a larger value than Stoop’s EAM model in the undercooled regime. Moreover, the deeper the
undercooling, the larger the difference.
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Figure 3. Density of liquid cobalt versus temperature.

The experimental data from Smithells Metals Reference Book [21] were also added to
figure 3, which are given by:

ρ = 7.76–9.88 × 10−4(T − 1766) g cm−3. (18)

Comparison indicates that both EAM potentials underestimate the density of stable liquid
cobalt by about 3–4%. For the density temperature dependence, dρ/dT , Pasianot’s EAM
model predicts a more reasonable value than Stoop’s EAM model. The difference between the
simulated dρ/dT from Pasianot’s EAM model and experimental value is about 7%, whereas
for Stoop’s EAM model the difference is over 22%. Owing to the lack of density data in
the undercooled regime, the deviation between the simulated and measured density below the
melting point cannot be evaluated.

The simulation results for the enthalpy H are shown in figure 4. Apparently, the enthalpy
has a linear dependence on temperature. Data analysis shows that from Stoop’s EAM model

H = −6.94 × 106 + (550.7 ± 3.29)T J kg−1, (19)

and from Pasianot’s EAM model

H = −7.15 × 106 + (654.9 ± 1.42)T J kg−1. (20)

This means that the heat capacity changes very little in the whole simulated temperature
range. Stoop’s and Pasianot’s EAM potentials produce heat capacities of 32.509 ± 0.194 and
38.595 ± 0.084 J mol−1 K−1, respectively. According to The Physical Properties of Liquid
Metals edited by Iida [22], the specific heat of stable liquid cobalt above the melting point is
40.38 J mol−1 K−1. Wang et al [5] measured the specific heat of undercooled liquid cobalt
in the undercooling range of 0–227 K using an electromagnetic levitation method, and the
experimental value is 40.6 J mol−1 K−1. Apparently, the predicted result of Pasianot’s EAM
model is quite close to the experimental value with a difference less than 5%. Stoop’s EAM
model underestimates the specific heat of liquid cobalt too much, the difference being 20%.

Figure 5 illustrates the dependence of mean square displacement (MSD) on the time of
liquid cobalt at different temperatures. Noticeably, MSD is a linear function of time. Thus the
self-diffusion coefficient can be calculated conveniently from the first derivative of MSD.



2572 X J Han et al

1000 1200 1400 1600 1800 2000 2200
-6.5

-6.3

-6.1

-5.9

-5.7

 Stoop’s EAM model
 Pasianot’s EAM model

H
, 1

06 
J/

K
g

T, K

H=-6.96×10
6 +(559.49±3.00)⋅T

H=-7.15 ×1
0
6 +(654.90±1

.42)⋅T

Figure 4. Calculated enthalpy of liquid cobalt versus temperature.

0 5 10 15 20 25
0

20

40

60

80

 1800 K
 1600 K
 1400 K
 1200 K

M
S

D
, 

2

Time, ps

Figure 5. Mean squared displacement of liquid cobalt at different temperatures.

Shown in figure 6 are the results of the self-diffusion coefficient of liquid cobalt as a
function of temperature. The open circles are the data calculated in the current simulation
from Pasianot’s EAM model, which are expressed as:

D = 1.291 × 10−7 exp

(
−48 795.71

RT

)
m2 s−1. (21)

The open squares represent the self-diffusion coefficients calculated from Stoop’s EAM model,
which are expressed as:

D = 6.315 × 10−8 exp

(
−31 715.12

RT

)
m2 s−1 (22)

where R is the gas constant, 8.314 J mol−1 K−1.
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Figure 6. Dependence of self-diffusion coefficient of liquid cobalt on temperature.

Due to the lack of experimental data on stable and undercooled liquid cobalt, we can only
compare the simulated results with those predicted from theoretical models or the experimen-
tally measured data of the neighbouring elements of cobalt in the Elemental Periodical Table,
such as iron and nickel. In figure 6, the solid circles are the self-diffusion coefficients of stable
liquid cobalt predicted by Yokoyama [23] based on a hard-sphere description, and the open
triangles and solid stars are the experimental self-diffusion coefficients of iron and nickel [23],
respectively. It can be seen that the self-diffusion coefficient of Pasianot’s EAM model is close
to Yokoyama’s work above the melting point. Moreover, the results of Pasianot’s EAM model
do not deviate greatly from the experimental values of liquid iron and nickel. Therefore, the
simulated result from Pasianot’s EAM model is reasonable. Stoop’s EAM model seems to
overestimate the self-diffusion coefficient of liquid cobalt too much.

From the investigations on the density, specific heat and self-diffusion coefficient, it
can be concluded that Pasianot’s EAM model is more successful than Stoop’s EAM model
in describing the atomic interactions in liquid cobalt. This is understandable, since Stoop
constructed the EAM of cobalt in the framework of the fcc structure with the data at low
temperature. However, the fcc phase is a high-temperature phase and it will transform into the
hcp phase through a martensitic phase transformation at a temperature around 693 K. Although
hcp and fcc structures have the same number density and similar stacking behaviour, they have
different neighbour distance and atoms in a given neighbour shell. Consequently, the atomic
interaction of cobalt cannot be described by Stoop’s EAM model in the framework of the fcc
structure as well as Pasianot’s EAM model in the framework of the hcp structure.

In order to analyse the influence of the computational domain on the results, runs with
500, 1372 and 2048 atoms are carried out. It was found that among different systems the
difference of density is less than 0.09%, and the difference of the enthalpy is less than 0.05%.
Therefore, the size effect is not noticeable, and a system of 4000 atoms is enough to obtain
reasonable results.

5. Conclusions

The density, specific heat and self-diffusion coefficient of liquid cobalt in a wide temperature
range, especially in the undercooled regime, have been predicted by molecular dynamics
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simulations with two different EAM potentials. The results indicate that although both EAM
potentials describe the PDF sufficiently well, only Pasianot’s EAM potential is capable of
delivering reasonable thermophysical data. This means that Pasianot’s EAM model in the
framework of the hcp structure is more successful than Stoop’s EAM model in the framework
of the fcc structure in modelling the atomistic interactions in stable and undercooled liquid
cobalt. At temperatures of 1200–2000 K, Pasianot’s EAM model predicts a density of
ρ = 7.49–9.17 × 10−4(T − Tm) g cm−3. The absolute value and temperature dependence of
the density are in good agreement with experimental results above the melting point, within
a deviation of less than 4% and 7%, respectively. The simulated self-diffusion coefficient
based on Pasianot’s EAM model shows an Arrhenius temperature dependence represented by
D = 1.291 × 10−7 exp(−48 795.71/RT) m2 s−1, which agrees well with the approximated
values from empirical expressions. Compared with the density and self-diffusion coefficient,
specific heat shows no obvious temperature dependence in the temperature range of 1200–
2000 K. The predicted specific heat of 38.595±0.084 J mol−1 K−1 from Pasianot’s EAM model
agrees well with the experimental results, with a deviation of less than 5%. Simulations show
that the molecular dynamics simulation method with an appropriate EAM inter-atomic potential
model can predict the thermophysical properties of undercooled liquid metals quantitatively.

Acknowledgments

This work was financially supported by the China Postdoctoral Science Foundation and the
National Natural Science Foundation of China under grant nos 50395101 and 50371043. The
authors are grateful to Mr D Q Yu for valuable discussions.

References

[1] Debenedetti P G and Stillinger F H 2001 Nature 410 259
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